Lectin-enhanced accumulation of manganese-limited Rhizobium leguminosarum cells on pea root hair tips.

نویسندگان

  • J W Kijne
  • G Smit
  • C L Díaz
  • B J Lugtenberg
چکیده

The ability of Rhizobium leguminosarum 248 to attach to developing Pisum sativum root hairs was investigated during various phases of bacterial growth in yeast extract-mannitol medium. Direct cell counting revealed that growth of the rhizobia transiently stopped three successive times during batch culture in yeast extract-mannitol medium. These interruptions of growth, as well as the simultaneous autoagglutination of the bacteria, appeared to be caused by manganese limitation. Rhizobia harvested during the transient phases of growth inhibition appeared to have a better attachment ability than did exponentially growing rhizobia. The attachment characteristics of these manganese-limited rhizobia were compared with those of carbon-limited rhizobia (G. Smit, J. W. Kijne, and B. J. J. Lugtenberg, J. Bacteriol. 168:821-827, 1986, and J. Bacteriol. 169:4294-4301, 1987). In contrast to the attachment of carbon-limited cells, accumulation of manganese-limited rhizobia (cap formation) was already in full progress after 10 min of incubation; significantly delayed by 3-O-methyl-D-glucose, a pea lectin haptenic monosaccharide; partially resistant to sodium chloride; and partially resistant to pretreatment of the bacteria with cellulase. Binding of single bacteria to the root hair tips was not inhibited by 3-O-methyl-D-glucose. Whereas attachment of single R. leguminosarum cells to the surface of pea root hair tips seemed to be similar for both carbon- and manganese-limited cells, the subsequent accumulation of manganese-limited rhizobia at the root hair tips is apparently accelerated by pea lectin molecules. Moreover, spot inoculation tests with rhizobia grown under various culture conditions indicated that differences in attachment between manganese- and carbon-limited R. leguminosarum cells are correlated with a significant difference in infectivity in that manganese-limited rhizobia, in contrast to carbon-limited rhizobia, are infective. This growth-medium-dependent behavior offers and explanation for the seemingly conflicting data on the involvement of host plant lectins in attachment of rhizobia to root hairs of leguminous plants. Sym plasmid-borne genes do not play a role in manganese-limitation-induced attachment of R. leguminosarum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of flagella, lipopolysaccharide, and a Ca2+-dependent cell surface protein in attachment of Rhizobium leguminosarum biovar viciae to pea root hair tips.

The relationship between Ca2+-dependent cell surface components of Rhizobium leguminosarum biovar viciae, motility, and ability to attach to pea root hair tips was investigated. In contrast to flagella and lipopolysaccharide, a small protein located on the cell surface was identified as the Ca2+-dependent adhesin.

متن کامل

Lectin Binding to the Root and Root Hair Tips of the Tropical Legume Macroptilium atropurpureum Urb.

Ten fluorescein isothiocyanate-labeled lectins were tested on the roots of the tropical legume Macroptilium atropurpureum Urb. Four of these (concanavalin A, peanut agglutinin, Ricinis communis agglutinin I [RCA-I], wheat germ agglutinin) were found to bind to the exterior of root cap cells, the root cap slime, and the channels between epidermal cells in the root elongation zone. One of these l...

متن کامل

Interactions between Rhizobia and Lectins of Lentil, Pea, Broad Bean, and Jackbean.

A quantitative method was developed to measure the binding of fluorescent-labeled lentil (Lens esculenta Moench), pea (Pisum sativum L.), broad bean (Vicia faba L.), and jackbean (Canavalia ensiformis L., DC.) lectins to various Rhizobium strains. Lentil lectin bound to three of the five Rhizobium leguminosarum strains tested. The number of lentil lectin molecules bound per R. leguminosarum 128...

متن کامل

Rhizobium leguminosarum genes involved in early stages of nodulation.

Nodulation genes from Rhizobium leguminosarum have been subcloned and transferred to a strain of R. phaseoli with its symbiotic plasmid deleted (and therefore its nodulation and nitrogen fixation genes). Normal infection and nodule development occurred when these strains were added to the roots of Pisum sativum (peas) and Vicia hirsuta. The pea nodules were examined by electron microscopy; bact...

متن کامل

Rhizoplane colonisation of peas by Rhizobium leguminosarum bv. viceae and a deleterious Pseudomonas putida.

Pseudomonas putida strain A313, a deleterious rhizosphere bacterium, reduced pea nitrogen content when inoculated alone or in combination with Rhizobium leguminosarum bv. viceae on plants in the presence of soil under greenhouse conditions. When plants were grown gnotobiotically in liquid media, mixed inocula of A313 and rhizobia gave a higher proportion of small evenly distributed nodules when...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 170 7  شماره 

صفحات  -

تاریخ انتشار 1988